Effects of VLDL and remnant particles on platelets

R Olufadi, CD Byrne - Pathophysiology of haemostasis and thrombosis, 2006 - karger.com
R Olufadi, CD Byrne
Pathophysiology of haemostasis and thrombosis, 2006karger.com
There is a considerable body of evidence supporting an association between
hypertriglyceridaemia, a hypercoagulable state and atherothrombosis. A disorder of
triglyceride metabolism is a key feature of the metabolic syndrome that increases risk of both
ischaemic heart disease and type 2 diabetes approximately 3-fold. An increasing
prevalence of obesity and metabolic syndrome is likely to contribute markedly to the
prevalent ischaemic heart in the foreseeable future, and therefore it is crucial to understand …
Abstract
There is a considerable body of evidence supporting an association between hypertriglyceridaemia, a hypercoagulable state and atherothrombosis. A disorder of triglyceride metabolism is a key feature of the metabolic syndrome that increases risk of both ischaemic heart disease and type 2 diabetes approximately 3-fold. An increasing prevalence of obesity and metabolic syndrome is likely to contribute markedly to the prevalent ischaemic heart in the foreseeable future, and therefore it is crucial to understand mechanisms linking hypertriglyceridaemia and a hypercoagulable state. Activation of platelets and the coagulation cascade are intertwined. VLDL and remnant lipoprotein concentrations are often increased with the metabolic syndrome. These lipoproteins have the capacity to activate platelets and the coagulation pathway, and to support the assembly of the prothrombinase complex. VLDL also upregulates expression of the plasminogen activator inhibitor-1 gene and plasminogen activator inhibitor-1 antigen and activity, a process accompanied by platelet aggregation and clot formation. The surface membrane of activated platelets also supports the assembly and activity of the prothrombinase complex, resulting in further thrombin generation and amplification of the coagulation cascade. Fibrinolysis is also less efficient when thrombin is generated. Thrombin induces thrombin activatable fibrinolysis inhibitor. Thrombin activatable fibrinolysis inhibitor is a carboxypeptidase that cleaves the carboxylic lysine residues on fibrin, thereby abolishing the critical binding site for tPA-plasminogen decreasing plasmin formation. Thus the evidence is supportive of dysregulated coagulation, and impaired fibrinolysis with a predisposition to atherothrombosis, in conditions such as the metabolic syndrome, in which there are increased concentrations of VLDL and remnant lipoproteins. The purpose of this review is to describe the current evidence supporting a procoagulant state induced by VLDL and remnant lipoproteins. The role of these lipoprotein classes in (1) platelet activation; (2) the intrinsic coagulation cascade, and (3) clot formation and fibrinolysis is discussed.
Karger