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Introduction
In sexually reproducing males of all spe-
cies, the gonad produces an abundant 
number of male gametes (sperm) over a 
long period of reproductive life span, and 
spermatogenesis itself is a long process 
(1, 2). In mammals, and more specifically 
in the mouse, the journey of sperm pro-
duction actually begins during the early 
embryonic period, around embryonic day 
6.5, when only a handful of primordial 
germ cells are allocated in the proximal 
epiblast (3). From there, in the XY male 
gonad, these specialized precursor male 
germ cells travel behind the hindgut over 
several days, proliferate, and then reach 
and colonize the testis cords. Within this 
developing structure, they first intermingle 
with other somatic cells, such as the Ser-
toli, Leydig, and vascular endothelial cells 
(4, 5). Guided by their own specific cell sur-
face proteins and the chemoattractant sig-
nals from the microenvironment or niche, 
germ cells eventually reach the basement 
side within the testis (6, 7). Once in posi-
tion, germ cells initially differentiate into 

gonocytes that will give rise ultimately to 
the male germline or spermatogonial stem 
cells (SSCs). In the mouse, the SSCs are 
also known as Asingle spermatogonia, and 
it is thought that different subpopulations 
of Asingle spermatogonia could exist in the 
mouse testes (7–12). Nevertheless, once 
established, SSCs exhibit two fates. Some 
SSCs will self-renew and serve to maintain 
the population, while others will transient-
ly amplify into various types of undifferen-
tiated, interconnected chains of spermato-
gonial progenitors called Apaired and Aaligned 
spermatogonia (7–13). The next differen-
tiation step results in production of type A, 
intermediate, and type B spermatogonia 
that will further give rise to primary and 
secondary spermatocytes as well as round 
spermatids. The spermatids undergo sev-
eral steps of maturation, becoming elon-
gated spermatids and eventually sperm 
that are released into lumen (1, 6).

In the adult testis, SSCs are very rare 
and usually enriched by surface markers 
using magnetic- or fluorescence-based 
methods (13–15). Although SSCs have been 

identified in many species, those from the 
mouse have been very well characterized 
because of the well-defined in vivo SSC 
transplantation assay developed by Brin-
ster and colleagues (7, 11, 13). This assay 
exploits the self-renewal property of the 
SSCs in which reporter-tagged SSCs from 
testes of donor mice are first enriched and 
then transplanted into testes of recipient 
mice. Prior to transplant, recipient mice 
are treated with busulfan, a gonadotoxic 
drug that renders them infertile by destroy-
ing endogenous testicular germ cells. Thus, 
functional reconstitution of donor-derived 
spermatogenesis within germ cell–deplet-
ed recipient testes is usually monitored by 
GFP or LacZ reporter expression (7, 11, 13). 
Many investigators have effectively used 
this assay to identify new markers that 
define SSCs; however, only a few “true” 
SSC markers are known to date, and the 
debate to pinpoint the identity of Asingle 
spermatogonia that can both the self-renew 
and differentiate continues (7, 10, 12, 13, 16, 
17). Moreover, other limitations to the SSC 
transplantation have also been realized (3, 
17). As an alternative, ex vivo culture tech-
niques for SSCs have been developed in 
which SSCs are maintained in vitro for a 
number of generations in the presence of 
appropriate combinations of Sertoli cell– or 
Sertoli/Leydig cell–derived growth factors 
(7, 14, 18, 19). In this issue of JCI, Aloisio et 
al. (20) have identified and elegantly char-
acterized paired box transcription factor 7 
(PAX7) as a new marker of a subset of Asingle 
SSCs in the mouse testis.

PAX7 is a maker for a rare 
subset of Asingle spermatogonia
Initially, Aloisio and colleagues used a 
cleverly designed RNA expression pro-
filing strategy to evaluate SSC cultures 
and adult testis (20). They reasoned that 
a Asingle spermatogonia–specific marker 
should be highly enriched in SSC cultures 
compared with adult testis, in which it 
would be the least represented in rare 
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Male germline or spermatogonial stem cells (SSCs) are conserved across many 
species and essential for uninterrupted production of sperm over long periods 
of reproductive life span. A better understanding of SSC biology provides 
limitless opportunities in male reproductive health, fertility preservation, and 
regenerative medicine. Although several potential markers define SSCs, not 
many definitive markers exist that are specific for a rare subset of SSCs that 
self-renew and have the ability to give rise to other progenitors, eventually 
contributing to all stages of spermatogenesis. In the September 2014 issue 
of the JCI, Aloisio and colleagues report that PAX7 is a new marker expressed 
uniquely in a rare subset of SSCs in mouse testes. PAX7+ cells fulfill all the 
criteria required for bona fide SSCs. Surprisingly, male germline-specific 
deletion of Pax7 indicates that it is dispensable for spermatogenesis.
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up to postnatal day 7. Thereafter, their rela-
tive abundance was reduced precipitously. 
This marked decrease is presumably due 
to expansion of other differentiated germ 
cells that predominate the tubules, a pro-
cess that continues for several months. 
Despite this low relative abundance in 
adult mouse testis, in vivo cell prolifera-
tion experiments indicated that PAX7+ 
cells are rapidly proliferating and the 
percentage of proliferating PAX7+ cells is 
nearly identical to that of FOXO1+ or Kit+ 
proliferating cells. The ability of this popu-
lation to expand is rather surprising, given 
that PAX7+ satellite cells in the muscle are 
normally very quiescent (21, 22).

Aloisio et al. next addressed the key 
issue relevant to defining a bona fide SSC 
(20). Do PAX7+ spermatogonia function as 
robust stem cells that give rise to all stages 
of spermatogenesis? Using laborious and 
long-term in vivo lineage-tracing experi-
ments, Aloisio and colleagues were able to 
visualize the descendants of PAX7+ SSCs at 
different periods of time (up to 16 weeks) 
and determine the average clone number 
and clone size.

Further evidence that PAX7+ sper-
matogonia possess stem potential and 
their descendants function as stem cells 

or larger chains of Aaligned spermatogonial 
cells. Strikingly, PAX7 and Kit coexpress-
ing (PAX7+Kit+) cells were not observed.

Testicular expression of PAX7 
in multiple species
A unique feature of the study by Aloisio and 
colleagues is their comparative expression 
analysis of PAX7 in the testes of multiple 
species (20). Aloisio and colleagues gen-
erated a mouse monoclonal anti-peptide 
body and used epitope mapping to iden-
tify a 10–amino acid sequence (QPQADF-
SISP) that is perfectly conserved in PAX7 
from 11 different species. These rare PAX7+ 
cells exhibited a remarkable phylogenetic 
conservation and localized to basement 
membrane in adult testis sections of 7 dif-
ferent species, including human, as was 
originally observed in adult mouse testes. 
In case of two species, baboon and cat, 
juvenile testis sections revealed a greater 
number of PAX7+ cells at this early devel-
opmental stage.

Cell cycle and developmental 
studies
Indeed, developmental analysis did indi-
cate that PAX7+ spermatogonia are repre-
sented abundantly in the neonatal testis 

subpopulation of stem cells. Indeed, they 
found that Pax7 is highly expressed in SSC 
cultures and nearly undetectable in adult 
testis. Pax7 is a known marker of skeletal 
muscle satellite stem cells, which are typi-
cally dormant but robustly take over dur-
ing the regeneration process following 
muscle injury. Furthermore, Pax7 mRNA 
was undetectable in embryonic testis, 
transcribed in the testis on postnatal day 2,  
and distinctly absent in differentiated 
spermatogonia type B, spermatocytes, and 
haploid germ cells. Most importantly, Pax7 
expression was totally in contrast to RNA 
helicase Ddx4 (also known as Vasa), which 
is more broadly expressed during germ cell 
development and initiated during the early 
stages of embryonic testis development. 
Encouraged by this high level expres-
sion of PAX7 in SSC cultures, Aloisio et 
al. analyzed PAX7 expression in normal 
testes samples and revealed that PAX7+ 
cells are rare in adult testis and present at 
much lower levels than the most abundant 
spermatogonia subtypes, including Kit+, 
FOXO1+, PLZF+, and RET+ cells, in adult 
mouse testes. Although PAX7+ cells coex-
pressed the subset markers FOXO1 and 
GFRα1, PAX7 expression was restricted 
to only Asingle spermatogonia and not Apaired 

Figure 1. A summary of known markers in 
various undifferentiated spermatogonial cells 
is shown. Based on the report by Chan and 
colleagues, ID4 is the only known Asingle sper-
matogonial marker (16). This ID4+ cell popula-
tion has the ability to self-renew and to give 
rise to progenitors from which other transient 
progenitors and eventually differentiating germ 
cells are produced. Studies by Aloisio et al. 
have now identified PAX7+ as another true SSC 
marker. Three possibilities exist: (i) PAX7+ cells 
are one subset; (ii) ID4+ cells are another subset 
of nonoverlapping SSCs; or (iii) PAX7+ID4+ cells 
are an overlapping subset of Asingle spermatogo-
nia. Known markers of spermatogonia include 
ID4, undifferentiated embryonic cell transcrip-
tion factor 1 (UTF1), GDNF family receptor αv1 
(GFRα1), nanos homolog 2 (NANOS2), neuro-
genin 3 (NEUROG3), lin-28 homolog A (LIN28A), 
FOXO1, spalt-like transcription factor 4 (SALL4), 
and promyelocytic leukemia zinc finger (PLZF). 
Figure modified with permission from Genes & 
Development (16).
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the powerful in vivo genetic linage-tracing 
methods, we may be able to better under-
stand the forever fascinating male germ-
line stem cells.
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came from a third set of studies in which 
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postnatal day 3, all the way up to 12 weeks 
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natal day 21, and these clones grew over 
time and persisted in mice at 12 weeks 
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proliferative and exhibited minimal or 
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eleven days after in vivo labeling dissoci-
ated testes were transplanted into germ 
cell–deficient host testes. Predictably, 
multiple donor-derived labeled clones 
were visible in host testes 4 weeks later. 
The robust nature of PAX7+ spermatogo-
nia was further corroborated by germline 
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with busulfan as well as radiotherapy and 
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Summary and future directions
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